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Abstract. Granular media jam into a panoply of metastable states. The way in which these states are
achieved depends on the nature of local and global constraints on grains; here we investigate this issue by
means of a non-equilibrium stochastic model of a hindered granular column near its jamming limit. Grains
feel the constraints of grains above and below them differently, depending on their position. A rich phase
diagram with four dynamical phases (ballistic, activated, logarithmic and glassy) is revealed. The statistics
of the jamming time and of the metastable states reached as attractors of the zero-temperature dynamics
is investigated in each of these phases. Of particular interest is the glassy phase, where intermittency and
a strong deviation from Edwards’ flatness are manifest.

PACS. 45.70.Vn Granular models of complex systems – 64.60.My Metastable phases – 45.70.Cc Static
sandpiles; granular compaction – 64.70.Pf Glass transitions

1 Introduction

Granular media [1] are by now recognised as being pa-
radigms of complexity [2], especially near their jamming
limit [3]. The fact that most grains are too large to be
perturbed by the effect of room temperature leads to an
‘athermal’ dynamics, which is a major cause of this com-
plexity — configurations once generated, are remembered,
and their hysteretic effects persist in any ensuing dynam-
ics, and the new configurations generated therefrom. An-
other origin of complexity in such systems is their generic
disorder; this leads in particular to a random landscape
of metastable states being explored if a granular system
is suitably ‘quenched’, rather than a crystallisation into
an appropriate ordered state. The way in which this land-
scape is explored depends strongly on the driving forces
applied, in the absence of any real thermodynamics.

The work we present here is an attempt to explore
many of these issues, in particular those to do with the
nature of ground states in a system near jamming, and
how these are reached. This is the main motivation for our
focusing on the effect of ‘zero-temperature’ dynamics on
the model we will later introduce, since zero-temperature
dynamics are known to be the route to systemic ground
states. Another aspect of interest around which our model
was designed was the exploration of spatial inhomogenei-
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ties, to answer questions such as: how does position along
a column of grains influence the dynamics observed there?
This is an important question for several reasons, one of
the earliest being that experimental measurements of den-
sity along a column of grains revealed wide variations [4],
depending on whether they were near the top, the bottom
or the middle — in its turn, this implied that the com-
pactivity of the system [5] was non-uniform. A more visible
manifestation of spatial inhomogeneities is the presence of
force chains [6] and bridge networks [7], which are unique
signatures of the granular state.

Given the complexity of issues we wish to investigate,
we have chosen a minimal model to work with, whose in-
gredients are based on our experience with several earlier
ones [8–11]. A feature that all the models share is that of
orientational disorder; every grain is allowed to occupy one
of two states, corresponding to ‘ordered’ and ‘disordered’.
Disordered orientations generate voids and waste space,
whereas ordered ones do not. Implicit in this description
is the effect of shape, which is most easily understood in
terms of the rectangular grains of aspect ratio a considered
in [8,9]. Grains aligned along their long edges (length 1)
result in a fully packed column, whereas those perched on
their short edges (length a) leave voids of size 1 − a. The
horizontal orientation is thus ordered, and the vertical one
disordered.

Our models became progressively more sophisticated.
The earliest model of rectangular grains considered in
[8,9] was strictly non-interacting, with the only effects
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included being due to gravity and excluded volume —
grains could not overlap, and those that were deeper in a
column were less free to move. One of the major extensions
in [10,11] was the introduction of the shape parameter ε
to include grains of arbitrary, i.e., non-rectangular shape –
such grains can have multiply many orientations in reality,
but the two-state description was retained in the interests
of simplicity. The parameter ε was allowed to vary over all
rational and irrational numbers, with a view to describing
regular and irregular grains, as will be explained further
below.

Another difference between the two models was that
the first one [8,9] interpolated between jammed and flu-
idised regimes, whereas the second one was explicitly con-
structed to examine the jamming regime. In the latter
case, it seemed reasonable to assume that translational dif-
fusion was essentially absent, with all compaction occur-
ring via orientational rearrangements — it was therefore
appropriate to focus on a column, rather a box [8,9], of
grains. Interactions were introduced in the column model
of [10,11] such that every grain now not only felt the
weight of grains above it, but was also constrained by all
of their orientations. This modelling was appropriate as
a representation of grains in the free surface layer, which
were too far from the base to feel an undertow; in the
jamming limit, however, such grains would be expected to
feel the orientational constraints arising from grains above
them.

The present model incorporates all of the above fea-
tures, and generalises them to include the presence of ori-
entational constraints arising from grains below a given
grain. Unlike our previous models [8–11], where interac-
tions propagated downwards from the top, here they prop-
agate both upwards and downwards. Clearly the extent of
this propagation depends on grain position In this sense
we model a column of grains with a top, a middle and a
bottom.

We devote this paper to a comprehensive investiga-
tion of the ground states of this model, and how they are
reached via zero-temperature dynamics. The main ques-
tions we will answer along the way will be related to sev-
eral of the issues mentioned above; in particular the issue
of spatial inhomogeneities will be relevant, since the dy-
namical regimes attainable via this model will depend on
which part of the column — top, middle or bottom — is
being examined. Additionally, we will see that there is a
panoply of metastable ground states available to the sys-
tem; the dynamics of their attainment will allow us to
classify the appropriate regimes as ballistic, logarithmic,
activated and glassy. The glassy regime is by far the most
novel and interesting of these regimes, and will be investi-
gated in greater depth than the others; its full exploration
is, however, reserved for future work.

The plan of this paper is as follows. The definition of
the model is given in Section 2. Section 3 contains an in-
vestigation of its static properties, with an emphasis on
the ground states. Section 4 presents a study of zero-
temperature dynamics: a rich phase diagram with four
dynamical phases is revealed and investigated thoroughly.

A discussion is presented in Section 5. Exact results for
small systems, as well as other technical results, are pre-
sented in three appendices.

2 The model

Like the unhindered (fully directional) model described
in [10,11], the present model consists of a finite column of
N grains, labelled by their depth n = 1, . . . , N . Each grain
assumes two orientational states, which are referred to as
ordered and disordered. We set σn = +1 (resp. σn = −1)
if grain number n is ordered (resp. disordered). A config-
uration of the column is therefore uniquely defined by the
orientation variables {σn}. There are 2N such configura-
tions.

The model is defined by a stochastic dynamics which
do not obey detailed balance. In the present context, de-
tailed balance essentially means a symmetry in m and n
on the dynamical effect of grain orientation σm on σn. The
expressions for the local fields (2.4), (2.7) clearly do not
obey such ‘action and reaction’. Our model is therefore
intrinsically out of equilibrium, and its stationary state
at finite temperature is a genuine non-equilibrium steady
state

More precisely, the model is defined as follows. Grains
are selected in a random sequential fashion and updated
with the orientation-flipping rates

w(σn = +1 → σn = −1) = exp
(
−λn + Hn

Γ

)
,

w(σn = −1 → σn = +1) = exp
(
−λn − Hn

Γ

)
,

(2.1)

where, along the lines of previous work [8–11]:

• Γ is a dimensionless vibration intensity, referred to as
temperature, and related to the ‘fast’ temperature [1]
in granular media.

• λn is the activation energy felt by grain n. We make the
assumption that it increases linearly with the depth n,
but otherwise does not depend on grain orientations.
We set

λn =
nΓ

ξdyn
, (2.2)

so that the local frequency

ωn = exp
(
−λn

Γ

)
= exp

(
− n

ξdyn

)
(2.3)

falls off exponentially, with a characteristic length ξdyn.
This dynamical length corresponds to the depth of the
boundary layer beyond which grains are frozen out by
the sheer weight of grains above them.

• Hn is the local ordering field felt by grain n, which
determines the orientational response of grain n to the
orientations {σm} of all the other grains. In previous
work [10,11] the local field Hn only involved the uni-
form effect of the upper grains (m = 1, . . . , n − 1).
In the present model, we also take into account the
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back-propagation from grains below a given grain n
(m = n + 1, . . . , N). This effect cannot be similarly
uniform. We assume for simplicity that upward inter-
actions are exponentially damped, with a character-
istic length ξint, the interaction length. We therefore
set

Hn = hn + gjn, (2.4)

where we denote by hn the uniform effect of grains
above n (m = 1, . . . , n−1), and by jn the non-uniform
effect of grains below n (m = n + 1, . . . , N), whose
strength is measured by a small (positive) coupling
constant g. Both components hn and jn of the local
field contain the contribution of every single grain ori-
entation σm = ±1 through the quantity f(σm). As
before [10,11], the latter assumes the following two val-
ues:

f(σn) =
{

ε if σn = −1,
−1 if σn = +1.

(2.5)

A useful equivalent formula is the following:

f(σn) =
1
2
(ε − 1 − (ε + 1)σn). (2.6)

In terms of this quantity, hn and jn are:

hn =
n−1∑
m=1

f(σm),

jn =
N∑

m=n+1

f(σm) exp
(
−m − n

ξint

)
.

(2.7)

The positive shape parameter ε represents an ‘effective
aspect ratio’ for a grain of arbitrary shape. This interpre-
tation originated in the framework of the non-interacting
model [8,9] with rectangular grains. Rational values of
ε = p/q imply that the grain size is expressible by a rect-
angle of sides p and q. Such grains are brick-like, and there-
fore can be packed perfectly to build some periodic tiling.
On the other hand, when ε is irrational, such tilings can-
not be built, so that the most close-packed states are those
of optimal, rather than perfect packing. We thus continue
to make the following equivalence [10,11]: rational values
of ε imply grains of regular shape, while irrational values
of ε imply grains of irregular shape.

The parameters of the model are therefore the num-
ber of grains N , the coupling constant g, the shape pa-
rameter ε, and most importantly the interaction and dy-
namical lengths ξint and ξdyn. The unhindered model of
references [9–11] is recovered in the absence of coupling
(g = 0). Throughout the following, we use the notations

xdyn = e−1/ξdyn , xint = e−1/ξint . (2.8)

To close up, we mention the following recursion relations
obeyed by the components hn and jn:

hn = hn−1 + f(σn−1),
(2.9)

jn = xint (f(σn+1) + jn+1) .

These relations, together with the boundary values h1 =
jN = 0, provide a fast algorithm to evaluate the local
fields, to be used in numerical simulations. On the other
hand, the relations (2.10) also imply

f(σn) = hn+1 − hn =
jn−1

xint
− jn. (2.10)

The latter equation determines the jn in terms of the hn:

jn = −xinthn+1 + j(1)
n ,

(2.11)

j(1)
n = (1 − xint)

N∑
m=n+2

xm−n−1
int hm + xN−n

int hN+1.

Throughout the following, we choose to impose for conve-
nience the boundary condition that the uppermost grain
is ordered:

σ1 = +1. (2.12)

3 Statics. Ground states

The dynamical rules simplify in the zero-temperature limit
(Γ → 0). Indeed (2.1) yields (provided Hn �= 0):

w(σn = −1 → σn = +1)
w(σn = +1 → σn = −1)

= exp
(

2Hn

Γ

)
→
{∞ if Hn > 0,

0 if Hn < 0.

(3.1)

Along the lines of references [9–11], a ground state of the
column is defined as a configuration where the orientation
of every grain is aligned along its local field:

σn = signHn =
{

+1 if Hn > 0,
−1 if Hn < 0.

(3.2)

The ground states of the unhindered model (g = 0) have
been investigated in [10,11]. In that case, the local field
Hn = hn acting on grain n only depends on the grains
above n. Equation (3.2) therefore yields a recursive pro-
cedure allowing one to construct ground states:{

hn > 0 =⇒ σn = +1, hn+1 = hn − 1,
hn < 0 =⇒ σn = −1, hn+1 = hn + ε.

(3.3)

In a ground state, all the local fields hn lie in the range

−1 ≤ hn ≤ ε. (3.4)

For the present model with a non-zero coupling constant g,
things are more complex. The local field Hn given in (2.4)
now depends both on the grains above n (through hn) and
on the grains below n (through jn). The condition (3.2)
therefore couples all the orientation degrees of freedom.
In particular the ground states admit no recursive con-
struction similar to (3.3). It is therefore a non-trivial task
to generate all the ground states of a finite column of N
grains, whose number depends on g and ξint in general.
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The situation however simplifies in the weak-coupling
regime (g � 1), where the ground states can be under-
stood in terms of those of the unhindered model (g = 0)
by means of a stability analysis. Just as in the case of the
unhindered model [10,11], rational and irrational values
of ε have to be considered separately, in the case of the
present hindered model.

3.1 Rational ε (regular grains)

We first recall some facts about the ground state structure
in the unhindered model. Using (3.3) in that case, we find
that whenever the shape parameter ε is a rational number
(in irreducible form)

ε =
p

q
, (3.5)

the fields hn vanish at all depths n such that n − 1 is an
integer multiple of p + q. The corresponding orientation
σn is left unspecified, and can be chosen at will. Ground
states are therefore all the random sequences made of two
well-defined patterns, P1 = + − · · · and P2 = − + · · ·
These patterns have the same length p+ q; they are made
of p ordered and q disordered grains, and only differ by
the orientations of their two uppermost grains. The model
therefore has an exponentially large number of ground sta-
tes, of the form exp(NΣ), where the configurational en-
tropy [12] reads

Σ =
ln 2

p + q
. (3.6)

It turns out that these ground states are still the exact
ones for the present model, as long as the coupling con-
stant g is smaller than some threshold gc. In order to show
this, we approach the problem via a stability analysis. We
assume that the hn field predominates, consider jn as a
small perturbation, and see whether the ground states for
g = 0 are still stable in the presence of the additional
feedback of the jn field.
• Consider first the case when a grain is at a depth n =
(p + q)m + 1 for some integer m = 1, 2, . . . The local
field hn vanishes, so that the orientation σn = η = ±1
can be chosen at will for g = 0, i.e., in the zeroth order
approximation. Once this choice is made, we have hn+1 =
f(η), σn+1 = −η, and hn+2 = ε − 1. In order to see if
the ground state is stable when the effect of the jn field
is included, we have to first estimate jn. Equation (2.12)
can be iterated once, yielding

jn = −xinthn+1 + xint(1 − xint)hn+2 + j(2)
n ,

(3.7)

j(2)
n = (1 − xint)

N∑
m=n+3

xm−n−1
int hm + xN−n

int hN+1.

First, we notice that the inequalities (3.4) allow one to
bound the remainder j

(2)
n as −x2

int ≤ j
(2)
n ≤ x2

intε. Then,
the values of hn+1 and hn+2 obtained above yield the
inequalities jn > xint(1 − xint)ε if σn = +1 and jn <
−xint(1 − xint) if σn = −1. Therefore, the orientation σn

is aligned with the local field Hn = gjn, irrespective of the
coupling constant g.

• Consider now a depth n which is not of the form n =
(p+q)m+1, so that the local field hn is non-vanishing. As
hn is an integer linear combination of terms f(σm) equal
either to −1 or to ε = p/q, it therefore obeys

|hn| ≥ 1
q
. (3.8)

On the other hand, (2.12) can again be used to estimate
jn. The inequalities (3.4) imply −xint ≤ j

(1)
n ≤ xintε, and

|jn| < (1 + ε)xint =
p + q

q
xint. (3.9)

The inequalities (3.8) and (3.9) imply∣∣∣∣hn

jn

∣∣∣∣ > 1
(p + q)xint

. (3.10)

The full local field Hn therefore has the same sign as hn

for all n, provided the coupling constant g is smaller than
some threshold gc, so that hn is the dominant field in this
weak-coupling regime. While the arguments above do not
allow one to predict exact values of gc

1 for generic rational
ε, they do yield a lower bound:

gc ≥ 1
(p + q)xint

. (3.11)

Also, similar arguments show that no other ground states
exist in this model in the same range of g, allowing us to
identify, for all g < gc, the ground states of this model
with those of the unhindered model [10,11].

3.2 Irrational ε (irregular grains)

Once again, we review the nature of the ground states
for irregular grains (irrational ε) in the earlier unhindered
model [10,11]. A unique ground state (corresponding to
optimal, rather than perfect packing) is obtained for each
value of ε in that case, such that all the fields hn generated
by the recursion procedure (3.3) are non-zero. The main
feature of this ground states is that it is quasiperiodic.

The nature of the ground states in the hindered model
under discussion here can be predicted by analogy with
the low-temperature excitations of the unhindered model.
Indeed it turns out that the presence of a weak coupling
(g � 1) nucleates disorder in this model, in the same
way as a low but finite temperature (Γ � 1) destroys the
ground state of the unhindered model [11].

More precisely, as long as the local field Hn has the
same sign as hn, i.e., for |hn| > g |jn|, the ground states of
both unhindered and hindered models are identical. The
depth up to which this stability condition is satisfied can
be estimated as follows. Equation (3.9) shows that typi-
cal values of jn are of order xint. The stability of a given
ground state is determined by the grains n where hn and

1 The exact threshold coupling gc will, however, be deter-
mined later on for ε = 1 (see (3.29)).
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jn are comparable, i.e., |hn| ∼ gxint � 1. Such sites with
very small hn fields are nothing but the nucleation sites
which dominate the low-temperature behaviour of the un-
hindered model [11]. The typical distance L(g) between
two consecutive nucleation sites diverges as

L(g) ∼ 1
gxint

(3.12)

in the regime of a weak coupling (gxint � 1). Thus – as
one might expect — the closer g is to zero, the less chance
there is that disorder is nucleated.

As long as the size N of the column is smaller than
L(g), or, equivalently, the coupling constant g is smaller
than 1/(Nxint), the unique ground state of the model is
the quasiperiodic ground state of the unhindered model.
For larger columns, a typical ground state can be thought
of as a sequence of independent quasiperiodic patches of
mean length L(g), pasted together end on end. For very
large sizes (N 	 L(g)), there is therefore an exponentially
large number of such ground states. The corresponding
configurational entropy:

Σ(g) ∼ 1
L(g)

∼ gxint (3.13)

vanishes in the weak-coupling regime (gxint � 1).
Finally, we can provide an integrated description of the

ground states of an irrational ε and of its rational approx-
imants. For g small and ε a fixed irrational, we consider
the sequence of its rational approximants εk = pk/qk [11].
The periods pk + qk of these approximants typically grow
exponentially fast with the approximant order k. Equa-
tion (3.11) implies the following. For the first rational ap-
proximants in the series, whose periods are smaller than
1/(gxint), the ground states are the same as in the un-
hindered model. For all the higher approximants, whose
periods exceed this threshold, ground states are expected
to be made of nearly independent patches, whose char-
acteristic length L(g) is given by (3.12), just as for the
limiting irrational. Notice that the period of the approxi-
mant that divides these two behaviours is of the order of
L(g) ∼ 1/(gxint) — there is a reassuring consistency in
this.

3.3 More details for ε = 1

We now focus on the simplest case, which is obtained when
the shape parameter equals ε = 1. The complex behaviour
we obtain even from this simplest of all cases is a tribute
to the inherent richness of the model.

Generic configurations

Assume that the column size N is even for definiteness.
Consider first a generic configuration. Equation (2.5) sim-
plifies for ε = 1 to f(σn) = −σn. As a consequence, the

components of the local fields read

hn = −
n−1∑
m=1

σm, jn = −
N∑

m=n+1

xm−n
int σm. (3.14)

The first expression shows that hn is an integer, whose
parity is opposite to n. Therefore:

• when the depth n = 2k is even, hn is odd, and thus
always non-vanishing. In the weak-coupling regime
(g � 1), we thus obtain Hn ≈ hn, irrespective of ξint;

• when the depth n = 2k−1 is odd, hn is even, and may
therefore vanish. When it does, we have Hn = gjn, so
that the sign of Hn depends on ξint in general.

In order to understand the complexity which can arise
from this dependence on the interaction length ξint, let
us focus on a column of size N = 6, in the particular
configuration + − + − ++. We have σ3 = +1, h3 = 0,
and H3 = gj3 = gxint(1 − xint − x2

int). The parenthesis
is a second-degree polynomial in xint. It vanishes (in the
physical range 0 < xint < 1) when xint equals the inverse
golden mean

φ =

√
5 − 1
2

≈ 0.61803. (3.15)

Thus when 0 < xint < φ, H3 = gj3 is positive, and the
condition σ3 = signH3 is fulfilled. This condition does not
hold for φ < xint < 1.

This example is illustrative of a general property of the
model. For a finite column made of N grains, the statics
and dynamics of the model depend on the relative position
of xint with respect to a finite number of threshold values,
where quantities of interest are discontinuous in general.
These threshold values are given by the following rule:
they are all the roots (in the physical range 0 < xint < 1)
of all the reduced fields jn/xint with n ≥ 3 odd, viewed as
polynomials in xint, in all the configurations. The polyno-
mial jn(xint)/xint has even degree d = N − n− 1, so that
d ≤ N − 4.

These threshold values all lie in the range 1/2 < xint <
1. This fact can be seen as follows. The expression (3.14)
for the local field jn can be recast as

jn = −xintσn+1 −
N∑

m=n+2

xm−n
int σm. (3.16)

The sum in the right-hand side is smaller than x2
int/(1 −

xint) in absolute value. As a consequence, the local field jn

always has the sign of the leading term, and therefore can-
not vanish, as long as xint > x2

int/(1−xint), i.e., xint < 1/2.
The above property is responsible for a strikingly general
result: no dynamical quantities for arbitrary system sizes
depend on xint for 0 < xint < 1/2, i.e., for ξint < ξint,1,
with

ξint,1 =
1

ln 2
≈ 1.44269. (3.17)

In particular, this explains the plateau in the data to be
presented in Figure 3.
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We have generated all the relevant polynomials up to
degree d = 12. The numbers Ad of physical roots with
degree d, and the numbers BN of threshold values for a
column of N grains, are found to be the following:2

A2 = 1, A4 = 5, A6 = 19, A8 = 97,

A10 = 442, A12 = 1880,

B2 = 0, B4 = 0, B6 = 1, B8 = 6, B10 = 25,

B12 = 121, B14 = 563, B16 = 2443. (3.18)

We can extract several insights from the above numbers.
Since B2 = B4 = 0, columns of size N = 2 and N = 4
exhibit no dependence on ξint at all. For N = 6, we
have B6 = 1: the unique threshold value is the inverse
golden mean φ introduced in (3.15). Consequently, quan-
tities typically assume two different forms in the intervals
0 < xint < φ or φ < xint < 1. For N = 8, we have B8 = 6:
quantities typically assume seven different forms in the in-
tervals demarcated by the six threshold values of xint, and
so on. The interested reader is referred to Appendix A for
the explicit verification of these predictions for columns of
size N = 4 and N = 6.

Ground states

We now focus on the ground states in the simple case
where ε = 1. They consist of dimerised configurations,
made of the patterns P1 = +− and P2 = −+ . Assuming
again that the column depth N is even for definiteness,
the generic ground state can be described as follows:

σ2k−1 = −σ2k = ηk (k = 1, . . . , N/2), (3.19)

with the dimer variable ηk = +1 (resp. ηk = −1) cor-
responding to the P1 (resp. P2) pattern. The boundary
condition (2.12) implies η1 = +1. The local fields in a
ground state read as follows:

h2k−1 = 0, h2k = −ηk,

j2k−1 = xintηk − (1 − xint)
N/2∑

l=k+1

x2l−2k
int ηl,

j2k = −(1 − xint)
N/2∑

l=k+1

x2l−2k−1
int ηl. (3.20)

There are 2N/2 ground states in total, or 2N/2−1 if (2.12)
is taken into account.

The two crystalline (uniform) ground states

U+ = + − + − + − + − + − · · · ,
U− = − + − + − + − + − + · · · (3.21)

play a special role; intuitively, this is because any other
ground state has conflicts between successive dimer pairs,

2 Since some of the polynomials are reducible, the same root
can be generated several times, so that the number BN of
distinct thresholds may be smaller than the sum A2 + A4 +
· · · + AN−4.

for example in a configuration such as +−−+ where the
second and third orientations would be in non-ideal posi-
tions. Such conflicts would of course also be present, albeit
more weakly, between dimer pairs that were more distant
from each other along the column, e.g. + − · · · − +.

This observation can be turned to a quantitative clas-
sification of ground states by means of the pseudo-energy.
This quantity is defined for an arbitrary configuration as
follows:

E = −
N∑

n=1

Hnσn, (3.22)

i.e.,
E = E0 + gE1, (3.23)

with

E0 = −
N∑

n=1

hnσn, E1 = −
N∑

n=1

jnσn. (3.24)

This definition can be motivated as follows. If the σn were
independent spins in external fields Hn, (3.22) would be
the corresponding Hamiltonian. In the present model, we
recall that the local fields Hn depend on the orientations
σm in a complex and non-symmetric way, so that the dy-
namics does not obey detailed balance, and the statics
is not described by any simple Hamiltonian. The pseudo-
energy defined by (3.22), however, provides a useful mea-
sure of the amount of configurational disorder in the full
interacting system and, in particular, allows us to classify
the ground states.

In the case of a ground state, the first component of
the pseudo-energy reads E0 = −N/2 (irrespective of the
ground state), whereas the second one reads

E1 = −Nxint

2
− (1 − xint)2

∑
1≤k<l≤N

x2l−2k−1
int ηkηl, (3.25)

in terms of the dimer variables ηk. The first term in the
above expression,

〈E1〉 = −Nxint

2
, (3.26)

is the mean of E1, in the sense of a uniform average over
all the ground states. The second term in (3.25) represents
the fluctuation in E1 from a ground state to another, which
typically grows as N1/2.

The crystalline states U± introduced in (3.21), respec-
tively corresponding to ηk = +1 and ηk = −1 for all k,
are the two absolute (global) minima of the pseudo-energy.
We find

E1(U±) = − Nxint

1 + xint
+

xint(1 − xN
int)

(1 + xint)2
. (3.27)

It follows that the crystalline ground states are separated
from a bulk of roughly equivalent metastable states by an
extensive pseudo-energy gap

∆E = 〈E1〉 − E1(U±) ≈ Nxint(1 − xint)
2(1 + xint)

. (3.28)
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It is remarkable that our model generates the kind of (free)
energy landscape that is familiar in theories of glasses [13],
and guessed to be valid for grains in the jamming limit [1],
where crystalline states lie well below a band of metastable
states.

Finally, the exact threshold coupling gc for ground-
state stability for ε = 1 can be evaluated as follows. Equa-
tion (3.20) implies that the state U+ is the first to be
destabilised by an increase of the coupling, and that its
weakest link is the second grain orientation σ2. The corre-
sponding local field reads H2 = −1+gj2, where j2 assumes
its largest possible value jmax

2 = xint(1−xN−2
int )/(1+xint).

The threshold coupling constant at which this first desta-
bilisation takes place therefore reads gc = 1/jmax

2 . In the
limit of an infinite column, we therefore obtain the follow-
ing exact expression for the threshold coupling:

gc =
1 + xint

xint
= e1/ξint + 1. (3.29)

The threshold coupling is found to be a decreasing func-
tion of the interaction length ξint, blowing up exponen-
tially at small ξint, and reaching a finite asymptotic value
2 in the ξint → ∞ limit. It is interesting to observe that
the general bound (3.11), i.e., gc > e1/ξint/2 in the present
case (p = q = 1), captures the qualitative features of the
dependence of the exact result on ξint.

4 Zero-temperature dynamics

The application of zero-temperature dynamics is the can-
onical way of finding the ground states of a model. In the
present model, grains are aligned one at a time with their
local fields. More precisely, grain n is selected at a rate
given by (2.3), and its orientation variable σn is aligned
along the local field Hn introduced in (2.4), according to
the deterministic rule

σn → signHn. (4.1)

This rule is well-defined for a non-zero coupling constant
g, because the local fields Hn generically do not vanish.

This leads to metastability in the following sense: a
finite column of N grains in an arbitrary initial config-
uration is eventually driven to an absorbing configura-
tion or attractor, in a finite jamming time T . This at-
tractor is necessarily one of the ground states described
earlier, i.e., a configuration where every orientation σn

is aligned with Hn. For a coupling constant g less than
the threshold gc given in (3.29), the attractors are the
2N/2 dimerised configurations, whose number is halved to
2N/2−1 if the boundary condition (2.12) is taken into ac-
count. Arbitrary initial conditions can lead to any one of
these metastable configurations being reached; they are
however fragile in the sense that a slightly different ini-
tial condition or stochastic history generically leads to
another attractor being reached instead. This fragility of
metastable states is one of the characteristics of granular
media [1].

In what follows, we will focus on two aspects of zero-
temperature dynamics:

• Statistics of the jamming time. The jamming time T
is the random time the system takes to converge to
an attractor, it being understood that the initial con-
figuration is disordered and randomly chosen. The N
dependence of both the mean jamming time 〈T 〉 and of
its full probability distribution are of interest. In this
respect, we introduce for further reference the reduced
variance

KT =
varT

〈T 〉2 =
〈T 2〉
〈T 〉2 − 1. (4.2)

• Statistics of the attractors. The statistics of the attrac-
tors reached by stochastic dynamics is also of special
interest, especially in relation to Edwards’ flatness hy-
pothesis [5]. We anticipate non-trivial results only in
the glassy phase, which will be investigated in Sec-
tion 4.4.

Inspired by previous work [10,11], we monitor the various
dynamical regimes of the model by means of the thickness
L(t) of the upper ordered layer of the column, defined as
the depth of the uppermost grain which is not aligned with
its local field:

L(t) = inf{n | σn �= signHn}. (4.3)

Figure 1 shows typical tracks L(t) for four representative
choices of values of ξint and ξdyn. Here and throughout the
following, we choose for definiteness the value g = 0.01 of
the coupling constant. This value is deep in the weak-
coupling regime, where all the results are virtually inde-
pendent of the precise choice made for the coupling con-
stant3. The dynamical behaviour observed turns out to
be very strongly dependent on the lengths ξint and ξdyn,
and suggests the existence of four qualitatively different
dynamical phases, which we have named ballistic, loga-
rithmic, activated and glassy. They will be investigated in
greater detail in what follows. The dynamical phase dia-
gram in the ξint − ξdyn plane presented in Figure 2 shows
already the existence of genuine phase boundaries (where
crossover phenomena become arbitrarily sharp in the limit
of an infinite column) denoted by full lines, and crossover
phenomena (which occur when ξdyn is comparable with
the column size N) indicated by dashed lines.

4.1 Phase I (Ballistic)

This phase is illustrated by panel I of Figure 1 — it corre-
sponds to small ξint and large ξdyn. Physically this implies
that one is looking at layers near the free surface (large
ξdyn) of a column where grains feel correlations from below
only weakly (small ξint). In other words, we are looking at
the ‘top’ of a granular column.

The thickness L(t) is observed to grow on average lin-
early with time:

〈L(t)〉 ≈ V t. (4.4)

3 For comparison, we recall that the threshold coupling gc

(see (3.29)) is always larger than 2.
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Fig. 1. Plots of the thickness L(t) of the upper ordered layer
of the column against time t, for g = 0.01, illustrating the
four phases. I: Ballistic phase (several tracks with ξint = 3,
ξdyn = ∞, N = 500). The slope V = 6.95 of the thick line is
taken from Figure 3. II: Activated phase (one single track with
ξint = 50, ξdyn = ∞, N = 70). III: Logarithmic phase (several
tracks with ξint = 3, ξdyn = 200, N = 500). The thick line
shows the result (4.27) with V = 6.95. IV: Glassy phase (one
single track with ξint = 50, ξdyn = 7, N = 70).

The (relatively small) fluctuations between different tracks
correspond to different stochastic histories. Equation (4.4)
shows that an ordered layer propagates ballistically down
the column with velocity V , a phenomenon which was al-
ready encountered in the unhindered model [10,11]. When
L(t) becomes equal to the column depth N , an attractor

Fig. 2. Schematic zero-temperature dynamical phase diagram
of the model in the ξint−ξdyn plane, showing the four dynamical
phases revealed and investigated below. The numbers ξint,c and
a∞ will be determined later (see (4.11) and (4.25)).

Fig. 3. Plot of the ballistic velocity V against ξint for ξdyn =
∞. Arrows indicate the value ξint,1 (see (3.17)) below which
V is constant and equal to V0 given in (4.6), and the critical
point ξint,c (see (4.11)) at which V vanishes linearly.

is reached and the dynamics stops, so that

T ≈ N

V
, (4.5)

again up to relatively negligible fluctuations.
Figure 3 shows numerical values of the velocity V ,

obtained by averaging L(t) over many independent ini-
tial configurations and histories (at least 104 per point).
The first interesting feature is a plateau region observed
for ξint smaller than the threshold value ξint,1 determined
in (3.17). As predicted in Section 3.3, the velocity V is
found to be constant over this region, and equal to its
value in the ξint → 0 limit:

V0 ≈ 9.75. (4.6)

As ξint increases, the effects of frustration begin to kick
in more and more via the back-reaction jn; the resulting
inefficiency of the zero-temperature dynamics causes the
velocity to decrease progressively with ξint.

It seems strange that V0 is such a large number, espe-
cially given that it leads to the apparition of other large
dimensionless numbers, such as ξint,c ≈ 28.4 (see (4.11))
or Dc ≈ 37 (see (4.15)). Fortunately, we can provide a
simple explanation for the high value of V0, that the nat-
uralness principle [14] would demand. We recall (see the
lines following (3.16)) that the component jn of the lo-
cal field always takes the sign of −σn+1 for ξint < ξint,1.
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Assume that the uppermost 2k grains of the column are
already dimerised. So far as zero-temperature dynamics
is concerned, the next two orientations σ2k+1 and σ2k+2,
are entirely decoupled from the rest of the column. Indeed,
h2k+1 = 0, so that H2k+1 = gj2k+1 has the sign of −σ2k+2,
whereas H2k+2 ≈ h2k+2 = −σ2k+1. If we make the sim-
ple assumption that the four configurations of these two
orientations are equally probable, the mean time it takes
to go to one of the two possible attractors can be shown
to be 1/4. This newly formed dimer has a spatial size 2,
and the corresponding front velocity is 2/(1/4) = 8. The
actual velocity V0 of (4.6) is only about 21% above this
simple-minded estimate4.

The data of Figure 3 also show that V vanishes linearly
as the borderline between Phases I and II is approached,
i.e., as ξint → ξ−int,c This behaviour fits in a natural way
within the effective description put forward in Section 4.2
in terms of biased Brownian motion (see (4.19)).

4.2 Phase II (Activated)

This phase of relatively large ξint and ξdyn is illustrated by
panel II of Figure 1. One is still considering grains that are
relatively free to move, as in the top layers of a column,
but now grains are increasingly constrained as a result of
grain orientations below them.

There is, typically, only very weak order in the col-
umn before it happens to jam: this is exemplified by a
mean thickness 〈L(t)〉 which is quite small compared to
the column depth N . Also, L(t) exhibits wild fluctuations
around its mean, which look stationary over the very long
time it takes for the system to jam. After sporadic excur-
sions to larger values, the layer thickness suddenly jumps
to L(t) = N , so that an attractor is reached.

This phenomenology is typical of an activated phe-
nomenon. We therefore expect that:

• the statistics of the jamming time T should be approx-
imately given by an exponential distribution:

ρ(T ) =
1
〈T 〉 exp

(
− T

〈T 〉
)

, (4.7)

characterised by a single scale 〈T 〉, with unit reduced
variance (KT = 1);

• the mean jamming time should grow exponentially
with the column size:

〈T 〉 ∼ exp(a(ξint)N), (4.8)

at least for very large N , where a(ξint) is the reduced
activation energy per grain, i.e., the height of the en-
tropic barrier the system has to cross to reach the
ground state.

4 We mention for comparison that in the analogous case in
the model of [10,11], that of an irrational ε → 1± in the im-
mediate neighbourhood of ε = 1, a similar line of reasoning
yields the value 2 for the velocity, whereas the measured ve-
locity V1± ≈ 2.38 is about 19% above that estimate

Huge finite-size effects rule out an accurate numerical ex-
ploration of the activated phase for generic ξint and ξdyn.
In the following, setting ξdyn → ∞, we examine two lim-
its of particular interest. We explore first the crossover
between Phases I (ballistic) and II (activated), as ξint ap-
proaches the critical value ξint,c. Next, we examine the
regime of deep activation, when the effect of upward in-
teractions is maximal (ξint 	 N).

Crossover between Phases I and II

In order to understand the crossover between Phases I and
II, we invoke the following picture of the behaviour of the
thickness L(t) of the ordered layer. In either of the two
phases, it starts from the surface and eventually propa-
gates to the base, when an attractor is reached. In the
purely ballistic case (ξint very small), the layer essentially
shoots down to form an attractor. The effect of increas-
ing ξint is to ‘admit impediments’ to this pure flow, to
cause L(t) to fluctuate (diffuse) increasingly before the
whole column reaches an attractor. The uniform effect of
grains above any given grain and the back-reaction of the
grains below it are responsible for the frustration that is
increasingly encountered in the search for an attractor as
ξint increases. The value of ξint at which both interactions
balance out is the critical point ξint,c, at which the velocity
V vanishes, so that the dynamics is purely diffusive.

The above intuitive picture is corroborated by Fig-
ure 4, showing a logarithmic plot of the ratio 〈T 〉/N and
a plot of the reduced variance KT against ξint, for sev-
eral values of the column size N . There is evidence of a
continuous phase transition between a ballistic phase for
ξint < ξint,c and an activated phase for ξint > ξint,c. We
notice from the top panel that 〈T 〉/N is roughly indepen-
dent of N in the ballistic phase, whereas it grows fast with
N in the activated phase. On the other hand, the plots of
KT approximately cross at a critical value KT ∼ 0.7 for
ξint = ξint,c ∼ 26.

This picture can be turned into the following effective
model. We treat the thickness L(t) as a collective coordi-
nate, and model its dynamics by a biased Brownian mo-
tion on an interval, with velocity V and diffusion constant
D. The motion starts at time t = 0 at an initial point
L(0) very near the free surface of the column, which is
considered as a reflecting boundary. It ends at the ran-
dom hitting time t = T when L(t) visits the base of the
column, i.e., L(t) = N , for the first time. Accordingly, the
base is considered as an absorbing boundary. This effective
model is analysed in detail in Appendix B.

Figure 5 shows that both the mean jamming time 〈T 〉
and its reduced variance KT obey finite-size scaling laws
of the form

〈T 〉 ≈ N2 F (X), KT ≈ G(X), (4.9)

with
X = N(ξint − ξint,c). (4.10)

The best data collapse is obtained for

ξint,c ≈ 28.4. (4.11)
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Fig. 4. Top: logarithmic plot of the ratio 〈T 〉/N against ξint,
for a dynamical length ξdyn = ∞, and variable column size N .
Bottom: plot of the reduced variance KT against ξint, for the
same parameters.

Furthermore, the data are observed to be in accu-
rate agreement with the finite-size scaling results (B.31)
and (B.32), derived analytically in Appendix B for the ef-
fective model. The excellent quality of the accord suggests
that the effective model predicts the exact finite-size scal-
ing functions of the model. The best agreement, shown
as full lines in Figure 5, is obtained with the following
identification:

X ≈ −115(z + 3.4), ln(T0/N
2) ≈ −4.3 (4.12)

between, on the empirical side, the scaling variable X of
the column model introduced in (4.10), and, on the theo-
retical side, the scaling variable

z =
V N

D
(4.13)

of the effective model, introduced in (B.30), and the dif-
fusive time scale

T0 =
N2

2D
, (4.14)

introduced in (B.24). This last relation, together with the
second equation of (4.12), enable us to predict the critical
value Dc of the diffusion constant for ξint = ξint,c. We thus
obtain Dc ≈ e4.3/2, i.e.,

Dc ≈ 37. (4.15)

The reduced variance of the jamming time at the critical
point is predicted in (B.26) to be a universal number:

KT =
2
3
. (4.16)

Fig. 5. Top: logarithmic plot of 〈T 〉/N2 against N(ξint−ξint,c).
for a dynamical length ξdyn = ∞, ξint,c = 28.4, and variable
N . Bottom: plot of the reduced variance KT against X, for
the same parameters. Full lines: plots of the analytical re-
sults (B.31) and (B.32) for the effective model, rescaled ac-
cording to (4.12).

This prediction is again in good agreement with the ap-
parent crossing point of the data of the lower panel of
Figure 4.

Finally, we compare the predictions of the effective
model in the ballistic and activated phases with the above
results.
• Toward the ballistic phase (ξint < ξint,c, i.e., V > 0).
In the ballistic phase, the prediction (B.21) for the mean
jamming time:

〈T 〉 ≈ N

V
− D

V 2 (4.17)

exhibits the observed ballistic behaviour (4.5), up to a
finite negative correction due to diffusion.

The fluctuations of the jamming time around its mean
are predicted to be Gaussian, with a reduced variance
given by (B.22):

KT ≈ 2D

V N
. (4.18)

This fall-off as 1/N agrees with the observation made
above that fluctuations become relatively negligible for
large columns.

The critical regime of the ballistic phase corresponds
to the regime X → −∞, i.e., z → +∞, in the finite-size
scaling laws (4.9). Equations (B.31) and (4.12) imply that
the scaling function F (X) falls off as F (X) ≈ AF / |X |,
with AF ≈ 115/D ≈ 3.1. This estimate implies in turn
that the velocity vanishes linearly as ξint → ξ−int,c, as
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V ≈ (ξint,c − ξint)/AF , i.e.,

V ≈ 0.32(ξint,c − ξint). (4.19)

The numerical value of the prefactor is in good agree-
ment with the slope of the extrapolation curve shown as
a dashed line in Figure 3.
• Toward the activated phase (ξint > ξint,c, i.e., V < 0).
In the activated phase, the prediction (B.27) for the mean
jamming time:

〈T 〉 ≈ D

V 2 e|V |N/D (4.20)

grows exponentially with N , as anticipated in (4.8). The
corresponding activation energy per unit length,

a =
|V |
D

, (4.21)

is essentially given by the negative of the velocity. The
reduced variance of the jamming time predicted by (B.29):

KT ≈ 1 − 2(V N + 3D)
D

e−|V |N/D (4.22)

converges exponentially fast to its limiting value unity,
characteristic of an exponential distribution.

The critical regime of the activated phase corresponds
to the regime X → +∞, i.e., z → −∞, in the finite-
scaling laws (4.9). The effective model predicts that the
scaling function G has an exponential convergence toward
G(+∞) = 1, whereas the scaling function F grows ex-
ponentially as F ∼ exp(−z) ∼ exp(BF X) with BF ≈
1/115 ≈ 0.0087. These results corroborate our expecta-
tions, including (4.7) and (4.8). They also imply that the
activation energy per grain vanishes linearly as ξint →
ξ+
int,c, as a(ξint) ≈ BF (ξint − ξint,c), i.e.,

a(ξint) ≈ 0.0087(ξint − ξint,c). (4.23)

Before leaving this topic, we emphasise that the simple
picture of a Brownian particle whose velocity V changes
sign at ξint,c appears to explain all our observations on
this crossover.

Limiting behaviour for ξint 	 N

We now look at the slowest possible dynamics in the acti-
vated phase; this will clearly occur when the column is at
its most correlated, where ξint is much larger than N , still
keeping ξdyn = ∞ for simplicity. We are thus led to inves-
tigate the doubly singular limit where ξdyn = ξint = ∞.
The only free parameter is then the column size N .

Figure 6 shows plots of the mean jamming time 〈T 〉
and of its reduced variance KT against N . When the col-
umn size N is rather small, the system still behaves more
or less ballistically; this fast dynamics leads to the nearly
linear growth of 〈T 〉 with N , and the concomitant de-
crease of the variance KT as a function of N . When N
is large enough, the system is fully activated, so that the

Fig. 6. Top: logarithmic plot of the mean jamming time 〈T 〉
against N , for ξint = ξdyn = ∞. Full line (hardly visible): fit
〈T 〉 = N(ln 2)/2−6.515 lnN +15.04 to the data for N > ξint,c.
Bottom: plot of the reduced variance KT against N , for the
same parameters. Arrows show the crossover scale N = ξint,c

(see (4.11)).

jamming time grows exponentially with N , while the vari-
ance increases, rapidly converging to its asymptotic value
KT = 1. The crossover between these behaviours occurs
when the column size N is of the order of ξint,c (shown as
arrows in both plots).

Finally, we focus on the activation energy a(ξint) de-
fined in (4.8). When ξint → ∞, the column is at its most
activated; hitting an attractor is then a totally random
process. The jamming time is therefore expected to be sim-
ply given by the ratio between the number Ω0 = 2N of dis-
ordered initial configurations and the number Ω∞ = 2N/2

of possible attractors:

〈T 〉 ∼ Ω0

Ω∞
∼ 2N/2. (4.24)

A similar purely entropic result is shown in Appendix C to
hold within a toy model of a Markovian dynamics on an as-
sembly of independent two-level systems. The result (4.24)
implies that a(ξint) saturates to the value

a∞ =
ln 2
2

≈ 0.34657. (4.25)

This limiting value of the activation energy has been in-
corporated into the fit presented in the upper panel of
Figure 6. The good quality of the fit can be viewed as
corroborating the result (4.25), in spite of large correction
terms.

To sum up, the activation energy a(ξint) is expected
to increase monotonically with ξint all over the activated
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Fig. 7. Plot of (1/N) ln〈T 〉 against 1/ξdyn for N = 50. Empty
symbols (ξint = 3) demonstrate the crossover between Phases I
(ballistic) and III (logarithmic). Dashed line: prediction (4.28),
with V = 6.95. Full symbols (ξint = ∞) corroborate the
crossover (4.33) between Phases II (activated) and IV (glassy),
in spite of large finite-size effects. Full straight lines: crossover
at 1/ξdyn ≈ aeff ≈ 0.155 (see text).

phase, and to interpolate smoothly between the linear
growth (4.23) as ξint → ξ+

int,c (where the given numerical
value of the prefactor only holds in the ξdyn → ∞ limit)
and the purely entropic limiting value (4.25) as ξint → ∞.

4.3 Phase III (Logarithmic)

This phase of relatively small ξint and ξdyn is illustrated
by panel III of Figure 1. The thickness L(t) of the or-
dered layer follows a well-defined master curve, growing
slower than linearly with time, again with relatively small
fluctuations between different tracks.

Already encountered in the unhindered model [10,11],
this phenomenon can be explained as follows. Equa-
tion (4.4) shows that the application of zero-temperature
dynamics causes order to propagate ballistically, for ξint <
ξint,c and ξdyn much larger than N . When ξdyn becomes
comparable with N , however, grains move progressively
slowly according to their depth, with local frequencies that
scale as (2.3). Writing the differential equation

dL

dt
≈ V exp

(
− L

ξdyn

)
, (4.26)

we find that the thickness grows according to

L(t) ≈ ξdyn ln
(

1 +
V t

ξdyn

)
. (4.27)

and the mean jamming time for a column of size N reads

〈T 〉 ≈ ξdyn

V

(
exp

(
N

ξdyn

)
− 1
)

. (4.28)

This result holds all over the left of the phase diagram
of Figure 2 (Phases I and III and the crossover between
them). It is confirmed quantitatively by the data shown
(empty symbols) in Figure 7.

The laws (4.4) and (4.5) are recovered for ξdyn 	 N ,
i.e., in the ballistic phase. In the logarithmic phase, when
ξdyn � N , the width of the ordered layer is predicted to
grow logarithmically:

L(t) ≈ ξdyn ln
V t

ξdyn
, (4.29)

so that the mean jamming diverges exponentially fast with
the column size N :

〈T 〉 ≈ ξdyn

V
exp

(
N

ξdyn

)
. (4.30)

4.4 Phase IV (Glassy)

The glassy phase is found when ξint is large and ξdyn is
small; this is by far the richest and most novel phase of
this model. The signal for L(t), illustrated in panel IV of
Figure 1, is neither nearly deterministic (as in the bal-
listic and logarithmic phases) nor totally random (as in
the activated phase). The glassy phase corresponds to the
‘bottom’ of a long column, where grain reorientations are
at their most hindered; grains in this region are weighed
down by those above them and, additionally, feel to the
fullest extent the effect of the orientational frustration be-
tween upper and lower grains.

This phenomenon is illustrated in Figure 8 from dif-
ferent viewpoints, using the time dependence of four ob-
servables (for the same stochastic history which was used
to illustrate Phase IV in Fig. 1). The jamming time
T ≈ 279 668 for this history is about 2.4 times larger
than the mean jamming time for the parameters N = 70,
ξint = 50, ξdyn = 7. The plotted observables are:

• the thickness L(t) (see (4.3)) of the ordered upper
layer;

• the second component E1(t) (see (3.24)) of the pseudo-
energy;

• the total number ν(t) of dimers;
• the fraction ν+−(t)/ν(t) of (+−) dimers.

The last two quantities involve the following definitions of
the numbers ν+− of (+−) dimers and ν−+ of (−+) dimers:

ν+− =
1
4

N/2∑
k=2

(1 + σ2k−1)(1 − σ2k),

ν−+ =
1
4

N/2∑
k=2

(1 − σ2k−1)(1 + σ2k), (4.31)

and of the total number ν = ν+− + ν−+ of dimers in a
given configuration:

ν = ν+− + ν−+ =
1
2

N/2∑
k=2

(1 − σ2k−1σ2k). (4.32)

The above formulae exclude the uppermost dimer, which
is fixed by the boundary condition (2.12).
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Fig. 8. Top to bottom: plots of the thickness L(t) of the
ordered upper layer, the second component E1(t) of the
pseudo-energy, the numbers ν(t) of dimers, and the fraction
ν+−(t)/ν(t) of (+−) dimers, for the history illustrating Phase
IV in Figure 1. Full symbols: values of the observables in the
attractor, i.e., right at the jamming time T .

The four tracks shown in Figure 8 all show strongly
correlated, intermittent and non-stationary fluctuations at
all time scales, ranging from the instantaneous to scales
of order of the jamming time 〈T 〉 itself. These features
are commonly observed in glassy systems. The existence
of a glassy phase exhibiting this phenomenology in a one-
dimensional model represents one of the most interesting
outcomes of this work.

If we examine the dynamical history depicted in Fig-
ure 8, we will notice that it can be described as an alter-
nation between two different kinds of periods:

• Periods of quietude. Four such periods are visible in
the figure. They are characterised by quasi-stationary
states with a high degree of order. The thickness L(t)
and the number ν(t) of dimers fluctuate around their
maximal ground-state values of 70 and 34 respectively;
the pseudo-energy E1(t) is correspondingly minimised,
and the fraction of (+−) dimers is either close to zero
or close to unity, indicating a highly polarised column
which is close to one of the crystalline attractors U±.
In some sense, it is as if the system has almost made
its mind up to choose one of the two global attractors,
and is dawdling in its vicinity with nearly no major
fluctuations, during each of these periods of quietude.
However, these long excursions do not in any sense
anticipate the fate of the column. In the given example,
the attractor finally chosen (full symbol) is close to U−,
although the system spends most of its time in the
vicinity of the attractor U+ with the fraction of (+−)
dimers typically close to unity during the periods of
quietude.

• Itinerant periods. During these periods of confused
wandering between two consecutive periods of qui-
etude, all the indicators fluctuate wildly with no par-
ticular aim in sight. All the observables monitored
in Figure 8 are characterised by low order, with the
pseudo-energy even going positive on occasion.

We end up with a speculation based on a pictorial analogy.
The tracks in Figure 8 are reminiscent of those obtained
in avalanche dynamics [15], where periods of small ran-
dom events give rise to large system-size avalanches, which
are known to be due to stress buildup and release on the
surface. It is interesting, using this analogy, to speculate
whether the itinerant periods in Figure 8 build up unsus-
tainable geometric disorder all along the column, which
can only be relieved by a systemic choice of a nearly or-
dered configuration (that is close to an attractor), in which
the column then lives, until disorder strikes again in the
form of the next itinerant period.

Mean jamming time

We now focus on a quantitative analysis of several as-
pects of the glassy phase, beginning with the mean jam-
ming time 〈T 〉. Recall that in the activated phase, i.e.,
for ξint > ξint,c and ξdyn large enough, the jamming time
grows exponentially fast with N (see (4.8)). We now ex-
amine the effect of decreasing ξdyn, to cross over into the
glassy phase.

The main effect of this is that an increasingly broad
spectrum of local frequency scales ωn kicks in, to slow
down the stochastic behaviour of the activated phase. In-
terestingly, a toy model of an assembly of independent
two-level systems is able to provide a clue to this crossover.
Its details are presented in Appendix C, but the crucial
feature is that it has two regimes – one where entropy
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dominates (‘entropic’), and the other which is dominated
by the slowest of the local frequencies (‘slow’).

The mean jamming time is in fact what would be most
naively expected from the above competition, that is, it is
the greater of the two times that would be generated:

〈T 〉 ∼ max
(
exp(a(ξint)N), exp(N/ξdyn)

)
, (4.33)

where exp(a(ξint)N) is the jamming time of (4.8) in the
ξdyn → ∞ limit, while 1/ωN = exp(N/ξdyn) is the slowest
microscopic time scale of the problem. More specifically,
this implies the following:

• in the activated phase, when ξdyn > 1/a(ξint), the re-
sult (4.8) for the mean jamming time in the ξdyn → ∞
limit is essentially unchanged — this corresponds to
the entropic phase of the toy model of Appendix C;

• in the glassy phase, i.e., for ξdyn < 1/a(ξint),
the jamming time grows proportionally to 1/ωN =
exp(N/ξdyn) – this corresponds to the slow phase of
the toy model of Appendix C.

From the above, one naturally expects there to be a sharp
transition in the ξint − ξdyn plane, along the line defined
by

ξdyn(ξint) =
1

a(ξint)
, (4.34)

shown qualitatively in Figure 2. For the strongest corre-
lations, as ξint → ∞, the transition point ξdyn(ξint) takes
its minimum value ξdyn(∞) = 1/a∞ = 2/(ln 2) ≈ 2.8854
(see (4.25)). On the other hand, at the boundary of
the ballistic/logarithmic and activated regimes (ξint →
ξ+
int,c), (4.23) predicts a divergence of the transition point

of the form

ξdyn(ξint) ≈ 115/(ξint − ξint,c). (4.35)

Despite huge finite-size effects, our simulation data (shown
as full symbols in Fig. 7) manifest the crossover described
above. The plateau in the left part of the data (full hor-
izontal line) yields the effective value aeff ≈ 0.155 for
ξint = ∞ and N = 50. This effective value is very far from
the theoretical asymptotic value a∞ (see (4.25)), underlin-
ing the importance of finite-size effects. However, and re-
assuringly for our analysis, the crossover does indeed take
place as predicted by (4.34), at a value of 1/ξdyn ≈ aeff

(full vertical line).

Statistics of attractors

We now turn to the statistics of attractors in the glassy
phase. The question of what they are is easily addressed.
Recall that the ground states of the model for ε = 1 are
the 2ν configurations made up of ν = N/2 − 1 dimers,
which satisfy the boundary condition (2.12). By construc-
tion, these are the possible attractors of zero-temperature
dynamics.

The next question, which relates to their dynamical
attainability, is less easy to answer. A precise formula-
tion of this question is: What is the probability Q(C) that

the application of zero-temperature dynamics leaves the
column in a given attractor C, starting from a uniformly
chosen random initial configuration? Or, more physically:
how and where does a constrained system, starting from
random initial conditions, attain jamming? This question
has held centre stage in theoretical [16,17] and experimen-
tal [18] explorations of granular media and many other
complex systems, ever since Edwards postulated that the
entropic landscape of granular systems was flat [5]. Ed-
wards’ flatness hypothesis (in the strong sense) implies
that the attractors are sampled uniformly by the dynam-
ics, so that Q(C) is independent of the attractor C, and
therefore equal to the reciprocal of the total number of
attractors.

Our reason for introducing these issues at such a late
stage in this paper is that the statistics of attractors are
likely to be non-trivial only in the glassy phase. All the
other phases indeed manifest sufficiently stochastic be-
haviour that one would expect the entropic landscape to
be at least approximately flat.

A central quantity in this framework is therefore the
dynamical entropy

S = −
∑
C

Q(C) ln Q(C). (4.36)

In the case where the attractors are sampled uniformly,
according to Edwards’ hypothesis, the dynamical entropy
assumes its maximal value:

Smax = ν ln 2, (4.37)

where ν = N/2 − 1.
Measuring entropies directly via numerical simulations

is known to be a very difficult task. Instead, we resort to
an inspired guess. Since it seems likely that the crystalline
attractors U± introduced in (3.21) will play a special role
in the dynamics, we use them implicitly to define quanti-
ties of interest on the attractors reached by the dynamics:

• A global indicator is provided by the probability dis-
tribution p(ν+−) of the number of (+−) dimers. By
using the dimer variables ηk introduced in (3.19), the
definitions (4.31) can be simplified as:

ν+− =
1
2

N/2∑
k=2

(1 + ηk), ν−+ =
1
2

N/2∑
k=2

(1 − ηk), (4.38)

so that ν+− + ν−+ = ν = N/2 − 1.
If Edwards’ hypothesis holds, i.e., if the 2ν attractors
are all equally likely to occur as attractors, the distri-
bution of ν+− is binomial:

p(ν+−) =
1
2ν

(
ν

ν+−

)
=

ν!
2ν(ν+−)!(ν−+)!

. (4.39)

In such a binomial distribution, the extremal values
ν+− = 0 and ν+− = ν, corresponding to the crys-
talline attractors U± (where all the dimers are of the
same kind) are the least probable. On the other hand,
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Fig. 9. Histogram plots of the probability distribution p(ν+−)
for N = 50 (hence ν = 24). Top: ξdyn = 10 and variable ξint.
Bottom: ξint = ∞ and variable ξdyn. The binomial distribu-
tion (4.39) is shown as thick full lines.

if the actual distributions obtained deviate from the
binomial law (4.39), this would indicate strongly that
all the attractors are not equally likely, the entropic
landscape is not flat, and thus of course that Edwards’
hypothesis does not hold.

• A local indicator of attractor structure is the correla-
tion function

χk =
〈(ν+− − ν−+)ηk〉 − 1

ν − 1
. (4.40)

This correlation measures the trend for the kth dimer
to be aligned with every other dimer. It vanishes iden-
tically if Edwards’ flatness hypothesis holds. In the ex-
treme opposite situation where only the crystalline at-
tractors U± are reached by the dynamics, the above
correlation takes its maximal value χk = 1 for all k.

Our numerical results for the probability distribution
p(ν+−) and the dimer correlation function χk are shown
in Figures 9 and 10. All the data were taken for a system
of size N = 50, which has ν = 24 dimers that are free to
reorient.

Figure 9 shows the variation of the form of p(ν+−)
with, first, fixed ξdyn = 10 and variable ξint, and next,
fixed ξint = ∞ and variable ξdyn. Figure 10 shows the
variation of χk along the same diagnostic lines.

In Figure 9, the binomial distribution (corresponding
to Edwards’ flatness hypothesis) is shown by a thick full
line, with which the data for the lowest value of ξint are
almost completely aligned. The statistics of attractors is

Fig. 10. Plot of the dimer correlation function χk against
depth n = 2k. Parameters are as in Figure 9.

thus very close to being uniform in the ballistic and log-
arithmic phases, which correspond to the top layers of a
column. As ξint increases, there is a gradual crossover to
a non-trivial two-peaked distribution; the same trend is
visible in the lower panel, when ξdyn decreases for infinite
ξint. At the beginning of the crossover, with its small devi-
ations from uniform sampling, one recognises the activated
phase, which corresponds to the middle of a column. By
the time that the two-peaked distribution is obtained in
both parts of Figure 9, the parameters — ξint large, and
ξdyn small — correspond clearly to the glassy phase. Here,
attractors in the neighbourhoods of the crystalline states
U± are eventually favoured, after long periods of systemic
wandering.

The above observations are reinforced by Figure 10.
In the upper panel, the correlation function χk is essen-
tially zero for low ξint, increasing progressively as ξint is
increased. In the lower panel, i.e., for infinite ξint, the cor-
relation function is never quite zero even for high ξdyn,
and only manifests a stronger depth-dependence as ξdyn

decreases. These results reinforce those found in an inde-
pendent model which uses random graphs to model grains
near jamming, where entropic deviations from Edwards’
flatness occur in certain regions of parameter space [19].

To recapitulate, the salient feature that emerges is
that the system prefers increasingly to live in the neigh-
bourhood of its two global minima, the attractors U±, as
one goes deep into the glassy phase. As a consequence,
the dynamical entropy decreases from a value close to its
maximal value (4.37) at the boundary between Phases II
and IV, to zero in the deepest part of the glassy phase
(ξint 	 N , ξdyn � N). Furthermore, Edwards’ flatness
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is well obeyed overall in three out of four phases in this
model; it is massively violated only deep in the glassy
phase of this model, where the configurational landscape
is completely rough.

Our success in constructing this glassy phase via such
a minimal model relied on the inclusion of two crucial
ingredients:

• long-range interactions (ξint > N), in order for the
dimers to jam cooperatively, rather than indepen-
dently of each other;

• a broad spectrum of local frequencies (ξdyn small) to
slow down the relaxation, and thus prevent a purely
activated mechanism driven by entropy.

It is noteworthy that both these minimal ingredients rely
on collective effects — one to do with interactions in space,
the other to do with degrees of freedom in time. This
model-specific conclusion at once agrees with, and rein-
forces, general notions [13] of cooperativity in glassy dy-
namics.

5 Discussion

The motivation for this model came from a mental image
of grains in a box under shaking: what could be at once
so simple, or — as we came to see in time — so complex?
Our first, simplest, model [8,9] involved only the effects
of gravity on non-interacting grains — deeper grains car-
ried the weight of grains above them, so were less free
to move. This was modelled by using a single dynamical
length ξdyn, representing the thickness of the dynamical
boundary layer: grains at a depth n much less than ξdyn

(which can be examined by setting ξdyn → ∞) are free to
move, whereas those where n ∼ ξdyn have lower frequen-
cies of motion, as normal in non-Newtonian fluids. Three
phases were found; in the ‘fluidised’ phase, grains flew as
well as moved along the surface, with a relatively quick
propagation of order down the sandbox. Grain disorder
was essentially frozen in, in the ‘glassy’ phase, with a very
slow propagation of order from the free surface. The ‘in-
termediate’ phase was in some ways the most interesting,
with a true competition between fast and slow dynamics.

In hindsight, it is astonishing that these diverse be-
haviours — especially the shape-dependent ‘ageing’ effects
of the glassy regime — were manifested in a totally non-
interacting model. A more realistic, interacting model of
the glassy regime was presented in [10,11]. Since close-
packed grains can typically not diffuse spatially, it was suf-
ficient to model a column, rather than a box, of grains. In
the model of [10,11], grain motions were constrained not
just by the masses, but also by the orientations of grains
above them, thus generating directional long-range inter-
actions. The effect of compaction around jamming was
modelled by a single local field hn, representing the ex-
cess void space [20] for grain n, which could be minimised
by a suitable choice of grain orientation. Additionally, in
this model, grains were allowed to have arbitrary shapes,
so that the the disordered orientation of a grain could

occupy any volume ε, and, correspondingly generate any
void space. The propagation of order in this model pro-
ceeded from the free surface to the base, and was ‘causal
in space’ — in that while upper grains constraint lower
ones, the converse was not true.

It took us some time and several explorations to realise
that while the model of [10,11] had at least the flavour of
the interactions needed to model a jammed glassy phase —
e.g. the constraining effect of long-range grain correlations
— its lack of slow dynamics (except those arising from
the trivial effect of grain masses) was a direct result of
its spatial causality. Essentially, provided a grain was not
blocked down by the weight of other grains, it was free to
orient itself subject only to the orientations of grains above
itself — that is, we were modelling the behaviour of the
top layers of a jammed column of grains, which never felt
the undertow of the base. It was small surprise, therefore,
that the ordering dynamics for ξdyn → ∞ were ballistic.

To model a column of grains with spatial inhomoge-
neities — that is, a column with a top, a middle, and
a bottom — we discovered that orientational constraints
needed to be inserted in a non-directed way. This enabled
us to model frustration — in this context, the need of a
given grain to balance the effects of two competing local
fields hn and jn — which led in its turn, to slow dynam-
ics. Still keeping the orientational constraints of previous
models [8–11] via the field hn, as well as the effect of ‘grav-
itational slowing down’ via ξdyn, we therefore introduced
here the notion that grains were also constrained by grains
below them, via the field jn which propagated over a cor-
relation length ξint.

From this very heuristic and pictorial modelling has
emerged a model column of grains that manifests all the
complexity of earlier models [10,11], and adds some more
via the introduction of the activated and glassy phases.
Our main success is of course in the realisation of a glassy
phase for which a minimal combination of two physical
ingredients — strong, bi-directional, orientational corre-
lations and a broad spectrum of local frequencies arising
from a natural depth-dependence — appears to be neces-
sary. The richness of this phase is worthy of further explo-
ration, especially to do with issues concerning higher-order
correlations and ageing.

Finally, we mention that our model provides some ra-
ther interesting and general insights into the nature of op-
timisation — the granular column modelled here reaches
its ground states in strikingly different ways, in the four
dynamical phases mentioned above. It is tempting to think
of these phases as representing different spatial parts —
‘top’, ‘middle’ and ‘bottom’ — of a column, and to con-
nect their different routes to compaction with the issue
of inhomogeneities in real granular media [1]. While this
picture is an appealing one, one should remember that
the four phases of this model were obtained by varying
ξint and ξdyn; the translation of our results to apply to a
real column would involve the natural apparition of such
variations as a function of depth.
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Appendix A: Exact results for N = 4
and N = 6

In this Appendix we derive analytical results on the zero-
temperature dynamics of the model investigated in the
body of the paper, for small systems. We concentrate
onto the statistics of attractors, i.e., the probability that
the system is absorbed in each attractor, starting from a
random initial configuration. Exact results will be succes-
sively obtained for systems of sizes N = 4 and N = 6, for
arbitrary ξint and ξdyn.

The case N = 4

The column made of 4 grains with the boundary condi-
tion (2.12) has three free orientations: σ2 ± 1, σ3 = ±1,
σ4 = ±1, and therefore eight configurations, in lexico-
graphical order:

C1 = + + ++, C2 = + + +−, C3 = + + −+,

C4 = + + −−, C5 = + − ++, C6 = + − +−, (A.1)
C7 = + −−+, C8 = + −−−.

The two attractors are the dimerised configurations C6

and C7, respectively corresponding to η2 = +1 and η2 =
−1. Our main goal is to determine the probabilities Q(6)

and Q(7) that the system is absorbed in each of these
attractors, starting from a random initial configuration.
The relevant information is encoded in the non-uniformity
parameter

∆ = 〈η2〉 = Q(6) − Q(7). (A.2)

The zero-temperature dynamics consists of a certain num-
ber of moves between configurations. For instance, C1 may
be updated into the following configurations at the follow-
ing rates:

C1
ω2−→ C5, C1

ω3−→ C3, C1
ω4−→ C2. (A.3)

As announced in Section 3.3, this dynamics is independent
of ξint for N = 4. It can be represented as an 8×8 Markov
matrix M, such that the occupation probabilities Pa(t)
of the configurations Ca (a = 1, . . . , 8) obey the forward
Kolmogorov equation [21,22]

dPa(t)
dt

=
∑

b

MabPb(t). (A.4)

The absorption probabilities of the attractors can be de-
rived by means of the following approach. Let Q

(c)
a be the

probability of being eventually absorbed by configuration
Cc, starting from the initial configuration Ca. For a fixed
configuration Cc, the absorption probabilities Q

(c)
a obey

the backward Kolmogorov equation [21,22]∑
a

Q(c)
a Mab = 0, (A.5)

complemented by the boundary condition Q
(c)
c = 1. For a

random initial configuration, we have therefore

Q(c) =
1
8

∑
a

Q(c)
a . (A.6)

By solving (A.5) successively for both attractors (c = 6
and c = 7), we are left with the following explicit result,
for arbitrary rates ωn:

∆ =
ω3ω4(ω3 − ω4)

2(ω2 + ω3)(ω2 + ω4)(ω3 + ω4)
. (A.7)

In the present model, where ωn = xn
dyn (see (2.3)), this

result simplifies to

∆ =
(1 − xdyn)x3

dyn

2(1 + xdyn)2(1 + x2
dyn)

. (A.8)

The non-uniformity parameter ∆ is a small positive quan-
tity, meaning that the crystalline attractor C6 = U+ is al-
ways slightly favoured by the dynamics. It coincides with
∆1 plotted in the upper panel of Figure A.1. It vanishes
in both limits xdyn → 0 (i.e., ξdyn → 0) and xdyn → 1
(i.e., ξdyn → ∞). Its maximum ∆ ≈ 0.012465 is reached
for xdyn ≈ 0.6253.

The case N = 6

The case of a column made of N = 6 grains can still be
dealt with by analytical means, although the final expres-
sions are much lengthier. The system has 32 configura-
tions. Its four attractors are the following configurations
(relabelled as a = 1, . . . , 4 for convenience):

C1 = + − + − +−, C2 = + − + −−+,
(A.9)C3 = + −− + +−, C4 = + −− + − + .

The relevant information is encoded in the three non-
uniformity parameters

∆1 = 〈η2〉 = Q(1) + Q(2) − Q(3) − Q(4),

∆2 = 〈η3〉 = Q(1) − Q(2) + Q(3) − Q(4), (A.10)

∆3 = 〈η2η3〉 = Q(1) − Q(2) − Q(3) + Q(4).

As announced in Section 3.3, N = 6 is the smallest system
size such that the dynamics depends in a non-trivial way
on the parameter ξint. The Markov matrix M assumes two
different expressions for 0 < xint < φ and φ < xint < 1,
where the inverse golden mean φ is given in (3.15). For
each of these two phases, the 32 × 32 Markov matrix M
has been generated, and the backward equations (A.5) cor-
responding to each of the four attractors have been solved
analytically5. We thus obtain the following expressions for

5 With help of the software MACSYMA.
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the non-uniformity parameters, in the range 0 < xint < φ

∆1 =
(1 − xdyn)x3

dyn

2(1 + xdyn)2(1 + x2
dyn)

,

∆2 = (x4
dyn − 1)(x3

dyn + x2
dyn + 1)

× (x4
dyn + x3

dyn + x2
dyn + 1)x6

dyn

P24(xdyn)
D(xdyn)

, (A.11)

∆3 = − (xdyn − 1)2(x2
dyn + 1)(x3

dyn + x2
dyn + 1)

× (x4
dyn + x3

dyn + x2
dyn + 1)x5

dyn

P25(xdyn)
D(xdyn)

,

and in the range φ < xint < 1:

∆1 = − x3
dyn

P38(xdyn)
D(xdyn)

,

∆2 = (x4
dyn − 1)(x3

dyn + x2
dyn + 1)

× (x4
dyn + x3

dyn + x2
dyn + 1)x6

dyn

P24(xdyn)
D(xdyn)

, (A.12)

∆3 = (1 − x4
dyn)(x3

dyn + x2
dyn + 1)

× (x4
dyn + x3

dyn + x2
dyn + 1)

P30(xdyn)
D(xdyn)

,

where we have introduced the following polynomials:

D(x) = 8(x + 1)3(x2 + 1)2(x2 − x + 1)(x2 + x + 1)2

× (x3 + x + 1)2(x3 + x2 + 1)2(x4 + x2 + x + 1)

× (x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + 1),
(A.13)

P24(x) = 4x24 + 5x23 + 10x22 + 15x21 + 9x20 − 5x19

− 51x18 − 104x17 − 203x16 − 308x15 − 434x14

− 515x13 − 605x12 − 634x11 − 609x10 − 533x9

− 449x8 − 330x7 − 218x6 − 130x5 − 71x4

− 27x3 − 3x2 + x + 1, (A.14)

P25(x) = 6x25 + 15x24 + 40x23 + 95x22 + 185x21

+ 335x20 + 547x19 + 842x18 + 1177x17 + 1556x16

+ 1900x15 + 2193x14 + 2349x13 + 2356x12

+ 2223x11 + 1955x10 + 1609x9 + 1242x8 + 888x7

+ 590x6 + 367x5 + 207x4 + 101x3 + 43x2

+ 17x + 4, (A.15)

P30(x) = 6x30 + 21x29 + 54x28 + 140x27 + 292x26

+ 546x25 + 949x24 + 1531x23 + 2283x22

+ 3207x21 + 4277x20 + 5377x19 + 6457x18

+ 7343x17 + 8025x16 + 8316x15 + 8236x14

+ 7793x13 + 7011x12 + 5978x11 + 4852x10

+ 3730x9 + 2682x8 + 1811x7 + 1142x6 + 662x5

+ 343x4 + 160x3 + 64x2 + 20x + 4, (A.16)

Fig. A.1. Plots of the non-uniformity parameters ∆i (i =
1, 2, 3) characterising the attractor statistics of a column of
N = 6 grains. Top: 0 < xint < φ (see (A.12)). Bottom: φ <
xint < 1 (see (A.13)). Note the powers of 10 in the vertical
scales.

P38(x) = 4x38 + 28x37 + 109x36 + 341x35 + 909x34

+ 2114x33 + 4416x32 + 8424x31 + 14836x30

+ 24262x29 + 37105x28 + 53309x27 + 72124x26

+ 92105x25 + 111177x24 + 127001x23

+ 137190x22 + 140074x21 + 135038x20

+ 122612x19 + 104406x18 + 82925x17 + 60963x16

+ 40790x15 + 24131x14 + 11829x13 + 3799x12

− 720x11 − 2614x10 − 2891x9 − 2404x8 − 1693x7

− 1031x6 − 555x5 − 269x4 − 112x3 − 39x2

− 11x − 2. (A.17)

The non-uniformity parameters ∆i are plotted in Fig-
ure A.1 (note the powers of 10 in the vertical scales). For
0 < xint < φ (upper panel), the ∆i are typically small.
They vanish in both limits xdyn → 0 and xdyn → 1.
∆1 is always positive, and it coincides with ∆ of the
case N = 4 (see (A.8)); ∆2 turns from negative to pos-
itive for xdyn ≈ 0.2598, whereas ∆3 is always negative.
For φ < xint < 1 (lower panel), the ∆i are typically
larger. Only ∆2 is the same in both phases. The ∆i

again vanish in both limits xdyn → 0 and xdyn → 1, ex-
cept for ∆1 = −5/96 for xdyn = 1 and ∆3 = 1/2 for
xdyn = 0. Finally, ∆1 turns from positive to negative for
xdyn ≈ 0.6581, whereas ∆3 is always positive.
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Appendix B: Biased Brownian motion
on an interval

In this appendix we consider biased Brownian motion on
the interval 0 < x < L, characterised by its drift velocity
V and its diffusion coefficient D. The endpoint at x = 0
is reflecting, whereas the endpoint at x = L is absorbing.

This mixed type of boundary conditions is referred to
as the transmission mode [21]. It ensures that, starting
at a given position x = �, the particle hits the absorb-
ing endpoint with certainty in some finite random time
T , referred to as the absorption time. Our main goal is to
determine the distribution ρ(T ) of this absorption time,
and especially its first few moments. We shall mostly con-
centrate onto the � → 0 limit, where the particle starts
from the immediate vicinity of the reflecting endpoint.

Let P (x, t) be the probability density for the parti-
cle to be at point x at time t, and J(x, t) the associated
probability current. We have

∂P

∂t
+

∂J

∂x
= 0, J = V P − D

∂P

∂x
, (B.1)

with the initial and boundary conditions

P (x, 0) = δ(x − �), J(0, t) = P (L, t) = 0. (B.2)

Introducing the Laplace transform

P̂ (x, s) =
∫ ∞

0

P (x, t) e−st dt, (B.3)

the above equations imply

sP̂ + V
∂P̂

∂x
− D

∂2P̂

∂x2 = δ(x − �), (B.4)

with boundary conditions

V P̂ (0, s) − D
∂P̂ (0, s)

∂x
= P̂ (L, s) = 0. (B.5)

Equation (B.4) implies the matching conditions

P̂ (�+, s) = P̂ (�−, s),
∂P̂ (�+, s)

∂x
− ∂P̂ (�−, s)

∂x
= − 1

D
.

(B.6)

Consider first the homogeneous equation obtained by set-
ting the right-hand side of (B.4) equal to zero. Looking for
a solution to this equation at fixed s of the form P̂ = erx,
we obtain the quadratic equation s+V r−Dr2 = 0, whose
two roots read

r1 =
V − W

2D
, r2 =

V + W

2D
, W = (V 2 + 4Ds)1/2.

(B.7)
The solution obeying the boundary conditions (B.5) reads

P̂ (x, s) =
{

A(r1 er1x − r2 er2x) (0 < x < �),
B(er1(x−L) − er2(x−L)) (� < x < L). (B.8)

Finally, the constants A and B are determined from the
matching conditions (B.6):

A =
e−r1�−r2L − e−r2�−r1L

D(r2 − r1)(r2 e−r1L − r1 e−r2L)
,

(B.9)

B =
r2 e−r1� − r1 e−r2�

D(r2 − r1)(r2 e−r1L − r1 e−r2L)
.

The survival probability of the particle at time t,

S(t) =
∫ L

0

P (x, t) dx, (B.10)

is nothing but the probability that the absorption time T
is larger than t:

S(t) =
∫ ∞

t

ρ(T ) dT. (B.11)

We have therefore, in Laplace space

Ŝ(s) =
∫ L

0

P̂ (x, s) dx, ρ̂(s) = 〈e−sT 〉 = 1 − sŜ(s).

(B.12)
The solution (B.8), (B.10) yields after some algebra

Ŝ(s) =
r2(e−r1� − e−r1L) − r1(e−r2� − e−r2L)

Dr1r2(r2 e−r1L − r1 e−r2L)
, (B.13)

and

ρ̂(s) =
r2 e−r1� − r1 e−r2�

r2 e−r1L − r1 e−r2L
. (B.14)

In the following we restrict the analysis to the limiting
case

� → 0, (B.15)

where the particle starts from the immediate vicinity of
the reflecting endpoint. The result (B.14) simplifies to

ρ̂(s) =
r2 − r1

r2 e−r1L − r1 e−r2L
, (B.16)

i.e., explicitly,

ρ̂(s) =
2W eV L/(2D)

(W + V ) eWL/(2D) + (W − V ) e−WL/(2D)
,

(B.17)
where W has been defined in (B.7).

The moments of the absorption time T can be derived
by expanding the result (B.17) as a power series in s, as
ρ̂(s) = 1 − 〈T 〉s + 〈T 2〉s2/2 + · · · We thus obtain

〈T 〉 =
1

V 2 (V L − D + De−V L/D),

〈T 2〉 =
1

V 4 (V 2L2 − 4D2 + 2D(3V L + D)e−V L/D

+ 2D2e−2V L/D), (B.18)
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so that the reduced variance of the absorption time T ,

KT =
varT

〈T 〉2 =
〈T 2〉
〈T 〉2 − 1, (B.19)

reads

KT = D
2V L − 5D + 4(V L + D)e−V L/D + De−2V L/D

(V L − D + De−V L/D)2
.

(B.20)
The above results have different kinds of behaviour in the
following cases.
• Ballistic phase (V > 0). In this case, the drift brings the
particle toward the absorbing endpoint. The mean absorp-
tion time

〈T 〉 ≈ L

V
− D

V 2 , (B.21)

grows linearly with L, according to a ballistic law with
velocity V . Note the negative correction due to diffusion.
Fluctuations of the absorption time around its mean are
asymptotically Gaussian. Their reduced variance,

KT ≈ 2D

V L
, (B.22)

falls off as 1/L.
• Diffusive point (V = 0). This special case corresponds
to pure diffusion. The expression (B.17) simplifies to

ρ̂(s) =
1

cosh((s/D)1/2L)
. (B.23)

The mean absorption time

〈T 〉 = T0 ≡ L2

2D
(B.24)

defines the diffusive time scale T0, which grows quadrati-
cally with L. The Laplace transform can be inverted ex-
plicitly in this case. The dimensionless ratio τ = T/T0 has
a non-trivial distribution:

ρ(τ) =
π

2

∞∑
k=0

(−1)k(2k+1) exp(−(2k+1)2π2τ/8), (B.25)

with moments 〈τ〉 = 1 (by construction), 〈τ2〉 = 5/3,
〈τ3〉 = 61/15, and so on. We have thus

KT = 〈τ2〉 − 1 =
2
3
. (B.26)

• Activated phase (V < 0). In this case, the drift brings
the particle toward the reflecting endpoint. It is therefore
very improbable that the particle sits by chance near the
absorbing endpoint. The absorption mechanism is there-
fore activated. The mean absorption time,

〈T 〉 ≈ D e|V |L/D

V 2 , (B.27)

is found to grow exponentially with the length L. The
corresponding activation energy per unit length reads

a =
|V |
D

. (B.28)

The distribution of the absorption time can be checked to
be asymptotically exponential. In particular, the reduced
variance,

KT ≈ 1 − 2(V L + 3D)
D

e−|V |L/D, (B.29)

converges exponentially fast to the limiting value unity,
characteristic of the exponential distribution.
• Critical phase (V small, L large). For a large length L,
the distribution of the absorption time exhibits a finite-
size scaling form in a narrow interval of V around the
diffusive point V = 0, whose width scales as 1/L, where
the dynamics interpolates between the ballistic and the
activated phases. Let us introduce the dimensionless finite-
size scaling variable

z =
V L

D
, (B.30)

which is twice the Péclet number introduced e.g. in [21].
The moments of the absorption time scale as

〈T 〉 = T0
2(z − 1 + e−z)

z2 ,

〈T 2〉 = T 2
0

4(z2 − 4) + 8(3z + 1) e−z + 8 e−2z

z4 . (B.31)

The reduced variance therefore depends continuously on
z according to

KT =
2z − 5 + 4(z + 1) e−z + e−2z

(z − 1 + e−z)2
. (B.32)

Appendix C: Mean hitting time for N
two-level systems

In this appendix we consider an assembly of N indepen-
dent, albeit not identical two-level systems, described as
spins sn = ±1 (n = 1, . . . , N). The spins are flipped ac-
cording to independent Markov processes whose rates

w(sn = +1 → sn = −1) = w(sn = −1 → sn = +1) = ωn

(C.1)
depend on the label n in an arbitrary fashion. The sta-
tionary state of this dynamical process is an equilibrium
state where the 2N configurations C = {s1, . . . , sN} are
equally probable. The above dynamics indeed obeys de-
tailed balance with respect to the uniform measure.

Let Ct denote the configuration of the system at time
t, starting from a given random initial configuration C0,
For a given stochastic history of the system, we introduce
the hitting time

T = min{t | Ct = C�}, (C.2)
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defined as the first time the system visits a given configu-
ration of reference, say C� = {+1, . . . , +1}.

It will be sufficient for our purpose to evaluate the
mean hitting time 〈T 〉, averaged both over the random
initial configuration C0, chosen with the uniform equilib-
rium measure, and over the stochastic dynamics. Along
the lines of the introduction of [21], it is advantageous to
consider simultaneously the probability

PC,C0(t) = Prob{Ct = C | C0} (C.3)

for the system to be in configuration C at time t, knowing
that it was in configuration C0 at time 0, and the proba-
bility

FC,C0(t) = Prob{Ct = C, C′
t �= C for all 0 < t′ < t | C0}

(C.4)
for the system to be in configuration C for the first time
at time t, again knowing that it was in configuration C0

at time 0. These two quantities are related by the integral
equation

PC,C0(t) =
∫ t

0

FC,C0(t
′)PC,C(t − t′) dt′. (C.5)

Let us average this formula with respect to the initial
configuration C0, chosen with the uniform equilibrium
measure. The left-hand side equals 1/2N , for all config-
urations C and all times t > 0. The return probability
PC,C(t − t′) = R(t − t′) is also independent of C. As a
consequence, the average over C0 of FC,C0(t′) defines some
average first-passage probability F (t′), which does not de-
pend on C either. The return probability R(t) and the
first-passage probability F (t) obey the convolution equa-
tion

1
2N

=
∫ t

0

F (t′)R(t − t′) dt′, (C.6)

i.e., in Laplace space, with the notation (B.3)

1
2N

= F̂ (s)R̂(s). (C.7)

In the present case of N independent spins, the return
probability factorises as

R(t) =
N∏

n=1

rn(t), (C.8)

where

rn(t) = Prob{sn(t) = sn(0)} =
1
2
(1 + 〈sn(t)sn(0)〉).

(C.9)
The temporal correlation function of each spin variable
exhibits a pure exponential decay at equilibrium:

〈sn(t)sn(0)〉 = e−2ωnt, (C.10)

so that

R(t) =
1

2N

N∏
n=1

(1 + e−2ωnt). (C.11)

The return probability tends toward the limit R(∞) =
1/2N , as it should. Its Laplace transform therefore has
the following behaviour as s → 0:

R̂(s) =
1

2N

(
1
s

+ C + · · ·
)

, (C.12)

where the finite part C is given by the convergent integral

C =
∫ ∞

0

(
N∏

n=1

(1 + e−2ωnt) − 1

)
dt. (C.13)

The mean hitting time under consideration is just the
mean value of the first-passage time:

〈T 〉 =
∫ ∞

0

t F (t) dt = −dF̂

ds
(s = 0). (C.14)

Expanding (C.7) to first order in s, we obtain 〈T 〉 = C,
hence our final result:

〈T 〉 =
∫ ∞

0

(
N∏

n=1

(1 + e−2ωnt) − 1

)
dt. (C.15)

Expanding the product and integrating the exponentials
term by term, we obtain

〈T 〉 =
1
2

∑
I

1∑
n∈I ωn

. (C.16)

In this expression I runs over the 2N−1 non-empty subsets
of {1, . . . , N}. We thus have for the first few values of N :

N = 1 : 〈T 〉 =
1

2ω1
,

N = 2 : 〈T 〉 =
1
2

( 1
ω1

+
1
ω2

+
1

ω1 + ω2

)
,

N = 3 : 〈T 〉 =
1
2

( 1
ω1

+
1
ω2

+
1
ω3

+
1

ω1 + ω2
+

1
ω1 + ω3

+
1

ω2 + ω3
+

1
ω1 + ω2 + ω3

)
. (C.17)

The situation of interest in the body of this paper is where
the flipping rates read ωn = xn

dyn (see (2.3)), where xdyn

assumes any value in the range 0 < xdyn < 1. The follow-
ing special cases can be worked out more explicitly.
• Uniform case (xdyn = 1). In this case, all the flipping
rates are equal (ωn = 1). Equations (C.15) and (C.16)
simplify to

〈T 〉 =
∫ ∞

0

(
(1 + e−2t)N − 1

)
dt =

1
2

N∑
m=1

(
N

m

)
1
m

,

(C.18)
where m is nothing but the number of elements of the set
I entering (C.16). We thus obtain the estimate

〈T 〉 ≈ 2N

N
. (C.19)
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• Binary case (xdyn = 1/2). The problem also simplifies in
this case, where ωn = 1/2n. Consider indeed (C.16). The
denominator of the generic term can be recast as∑

n∈I

ωn =
1

2N

∑
n∈I

2N−n, (C.20)

The sum in the right-hand side is nothing but the binary-
digit expansion of a generic integer M = 1, . . . , 2N − 1.
Therefore

〈T 〉 = 2N−1
2N−1∑
M=1

1
M

. (C.21)

We thus obtain the estimate

〈T 〉 ≈ 2N N ln 2
2

. (C.22)

This particular value demarcates two different kinds of
behaviour. The change of variable ζ = ln(2t)/λ in (C.15),
with the notation λ = |ln xdyn|, indeed yields

〈T 〉 =
λ

2

∫ ∞

−∞

(
N∏

n=1

(
1 + exp(−e(ζ−n)λ)

)
− 1

)
eζλ dζ.

(C.23)
The factors in the product are approximately equal to 2
when the difference ζ − n is very negative, and to 1 when
it is very positive. As a consequence, with exponential
accuracy, we obtain

〈T 〉 ∼ max(2N , 1/xN
dyn)

∼
{

2N (1/2 < xdyn < 1),
1/xN

dyn (0 < xdyn < 1/2). (C.24)

These estimates are exact up to xdyn-dependent prefac-
tors, as we now successively show for 1/2 < xdyn < 1 and
for 0 < xdyn < 1/2.
• Entropic phase (1/2 < xdyn < 1). In this phase, where
the rates ωn exhibit a rather mild dependence on n, the
exponential estimate 〈T 〉 ∼ 2N has an entropic origin.
Just as in (4.24), it scales as the ratio between the initial
phase-space volume (all the 2N configurations) and the
final one (one single configuration of reference).

A more accurate estimate of 〈T 〉 goes as follows. Re-
writing each factor of the product entering (C.15) as

1 + e−2txn
dyn = 2 e−txn

dyn cosh(txn
dyn), (C.25)

we obtain
〈T 〉 ≈ 2NA(xdyn), (C.26)

with

A(xdyn) =
∫ ∞

0

e−txdyn/(1−xdyn)
∞∏

n=1

cosh(txn
dyn) dt,

(C.27)
where both the product and the integral are convergent.
The series expansion of the amplitude A(xdyn) as xdyn →
1 can be derived by expanding the infinite product as a

Fig. C.1. Plot of (1/N) ln〈T 〉 against |ln xdyn|, illustrating
the behaviour of 〈T 〉 in the various phases. Full lines: data for
N = 6, 10, 14, 18, and 22. Dashed straight lines: exponential
estimates (C.24). Full symbols: values of xdyn where A(xdyn) =
1 or B(xdyn) = 1 (see text).

power series in t and integrating term by term. We thus
obtain

A(xdyn) = (1 − xdyn) +
3
2
(1 − xdyn)2

+
5
2
(1 − xdyn)3 +

19
4

(1 − xdyn)4 + · · · (C.28)

The amplitude A(xdyn) vanishes linearly as xdyn → 1, so
that (C.19) and (C.26) are compatible. The result (C.22)
suggests that A(xdyn) diverges linearly as xdyn → 1/2+:

A(xdyn) ≈ ln 2
4(xdyn − 1/2)

. (C.29)

Finally, we have A(xdyn) = 1 for xdyn ≈ 0.6396.
• Slow phase (0 < xdyn < 1/2). In this phase, the scale of
the hitting time is given by the slowest time scale of the
system: 〈T 〉 ∼ 1/ωN = 1/xN

dyn.
A more accurate estimate of 〈T 〉 can be derived as

follows. Setting n = N − j in (C.16), we obtain

〈T 〉 ≈ B(xdyn)
xN

dyn

, (C.30)

where
B(xdyn) =

1
2

∑
J

1∑
j∈J x−j

dyn

, (C.31)

and where J runs over all the non-empty subsets of the
integers {0, 1, 2, . . .}, i.e., explicitly

B(xdyn) =
1
2
(1 + 2xdyn + 3x2

dyn + 7x3
dyn + 11x4

dyn

+ 25x5
dyn + 44x6

dyn + 94x7
dyn + · · · ). (C.32)

The result (C.22) suggests that the amplitude B(xdyn)
diverges linearly as xdyn → 1/2−:

B(xdyn) ≈ ln 2
4(1/2 − xdyn)

. (C.33)

Finally, we have B(xdyn) = 1 for xdyn ≈ 0.2662.
Figure C.1 shows a plot of (1/N) ln〈T 〉 against

|ln xdyn|, for system sizes N ranging from 6 to 22. The
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data exhibit a sharper and sharper crossover between
both exponential estimates (C.24), shown as dashed lines.
The data for all the values of N intersect the dashed
lines very near the theoretical values xdyn ≈ 0.2662 and
xdyn ≈ 0.6396, where the amplitudes B(xdyn) and A(xdyn)
are equal to unity.
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